CONVECTIVE HEAT TRANSFER FOR A NONLINEAR
VISCOPLASTIC MEDIUM IN A CIRCULAR PIPE
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Heat transfer is considered for a viscoplastic material of nonlinear type flowing with dis-
sipation in a circular tube with developed laminar flow and boundary conditions of the first
kind,

There is much interest in heat transfer in the laminar flow of systems in circular tubes. The problem
has been considered in reasonable detail for Newtonian liquids [1]. See [2] for the flow of a non-Newtonian
liquid subject to a power law and dissipative heating, Forced laminar convection of heat in a viscoplastic
medium of Shvedov—Bingham type without dissipation was examined in [3], and the case of internal viscous
heating was studied in [4-7]. However, all these papers give only a restricted range of eigenvalues, eigen-
functions, and basic coefficients for the Fourier expansion, Calculations for viscoplastic media have been
given for three or four values of the plasticity parameter, which makes it difficult to use them for other
conditions, particularly for the flow near the inlet to a tube,

Here we solve the Gretz — Nusselt problem with allowance for dissipation for a viscoplastic composi-
tion of nonlinear type described by the rheological equation
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which was proposed in [8].

In (1), T and 7y are the shear stress and limiting shear stress, Tp is the analog of the plastic viscosity,
v is the shear rate, and n and m are real numbers that can take any values.

Here we use the curves of (1) with the condition n = m, i,e.,
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Direct integration of (1a) with the condition of adhesion at the wall [9] gives the velocity distribution
across the tube with a steady laminar flow and constant physical properties for the liquid:
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Here p =r/R, r is the current radius, R is the radius of the tube, q = AP/l is the pressure fall along a
length 7, 0g = To/ry = To/R is the dimensionless radius of the quasirod zone, Ty is the shear stress at the
wall, Clrf are binomial coefficients, and n is as appears in {la),

The shear stress is less than 7, near the axis, and the material moves along the tube as a solid at the

constant velocity
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The velocity function is put in dimensionless form as
2n—k 2n—k
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Equations (2)-{4) are reasonably convenient for computation if n does not exceed 4; larger values lead
to reduced accuracy because the series are sign-varying and the terms in the summation are similar in
magnitude, The error is particularly large for gy — 1. Formula (4) has [9] been put in the form

L e net —
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which enables one to do the calculation of ¢ for any n and ¢ with the required degree of accuracy.

The following is the energy equation for one-dimensional steady-state flow with constant physical
characteristics incorporating viscous dissipation but neglecting the axial leakage of heat by conduction:

ot A0 ot du
oINS DAL A P Ui
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where p*, Cp, A are respectively the density, specific heat, and thermal conductivity of the medium, while
z is the axial coordinate,

This solution was compared with that in [8] by assuming that the liquid enters the heat-transfer sec-
tion at a temperature t; constant over the cross section and with the velocity profile described by (2), Then
we have the following system of equations and boundary conditions if we neglect the mass forces for the
problem of {1a) for a circular tube with a constant wall temperature t;:
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umax
We substitute in (7) for umax from (3) and introduce
w = ar? andPe = Mlﬁ
81, A
Then the factor p*CpumaxR/A becomes
_1 nti 4
n n—k
p* CpimaxR — Pe (,1 — SO ) E C:ll+k—1 0o = Pe F (1, o),
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[
where, from [9],
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We use the relations

aR de  aR2 (L L 16
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and the dimensionless variables
X = Z_ and 9 = ! tw,
2R Pe Z(0 - tw

to transform (7) finally to

i
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We put the solution to (9) as the sum of two functions: ¢ =gy + ¢y, of which the first $,(X, p) satisfies )
the corresponding homogeneous equation with the boundary conditions of (9), while the second satisfies the
inhomogeneous equation with zero boundary conditions.

It is clear that ¢ in this case coincides with the Gretz—Nusselt solution [1]:

ﬁ(X p) = EC exp

where g and P are the eigenvalues and the functions for the Sturm —Liouville problem
’Nr 2 .
(O%r )"+ Brp® (0) ¥ = 0, a1y
¥ (1) = . (0) = 0,

where the Cy are the coefficients in the expansion of (0, p) =1 with respect to the eigenfunctions e with
the weight pp(p).

) s Bo0), (10)

The particular solution 4, to (9) we put as a series in the eigenfunctions ¢ with the coefficients de-
pendent on the argument X:

8.(X, 0) = X A (X) by Brr 0)- (12)
]

We substitute for $,(X, p) in (9) to get

—tp( )EdAk¢h=~EAh(p¢k) -+ Dp( 7_00) (13)
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or, using (11),

We expand p(pt/® -—00/ 1y /o(p) as a Fourier series with respect to the Py to get

iy g0
E Y, + Ay =D ay, Py, (13b)
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Fig, 1. Variation of the mean-mass temperature along the length
of the tube: a) n =1 (Shvedov—Bingham model): 1) gy =0 (New-
tonian liquid); 2) 0,3; 3) 0.6;4) 0.8;Db) oy =0.5;1)n=1;2)2;3) 3
(D = 0; 25).

As (13b) should be obeyed for any ik, the coefficients to the terms containing the §k are zero, i,e.,

F dAk

2

+ A, B: = Day; A,(0) = 0. (15)

The solution to (15) is the function

Ak(X):D%[I—exp (— _2%2_)(” (16)
&
Then (12) is put as
8, (X, p):DE% [1 —exp (——ﬁ’fx)]wh(ﬁk, o). 17)
-3

Formulas (10) and (17) give the general solution to the problem of (9):

B 0,0, = ECkexp(—- 2B x )%Jr b\ & [l—exp( 2 y H%. (18)
0 0
From (18) we isolate the quantity

Ty —DE . P Bz, 0) (19)

bty 2 :
19a
167]p w?/ A [32 e (192)

which is the temperature rise due to the frictional heat [10].

or

The first term in (18) falls from 1 for X = 0 to zero for X — «, whereas the second series increases
with X from zero for X = 0 to the maximum value of $.for X — co; if there is no dissipative heat production,
e., if D =0, then (18) reduces to {(10),

The temperature distribution is known, so it is easy to determine the mean-mass temperature of the
liquid in a given cross section [1]:

- 1
— {—t 2u
=Lt _ E“J 89 (o) pdp. (20)
by —1, u
0

In turn

1
u=2fpu(p)dp,
0
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Fig., 2, Variation of the temperature gradient at the wall
along the length of the tube: a)n =1: 1) gy = 0; 2) 0,3; 3)
0.654) 0,8;b) 0p=0,5(D=0;25): 1) n=1;2) 2; 3) 3.

whence
— 1
L (21)
= = | p9(p)dop.
2”1!’18.51 §
Substitution of (21) into (20) gives
1
_ feve@adp
L Em— (22)
S PP (p) dp
1]

We substitute from [9] the values for u and Uy ax to represent the denominator of (22) as
3n—1 _k;
! Cﬂ—1zz Cint—1 G0’
L= jw (p)dp = -~ e 23)
0 4Chn—1 2 Cont—1 68
0

We substitute into (22) the value of ¢ from (18) and use (11) to get

Tt):__EBk Ckexp( ‘;k )+D B [l—exp (— 2?} X)}}(‘Zq;h )p=1

or
283 b 283
=_E {B exp IE” X) -}—DB—’%‘[l—exp (—%xm (24)
where
1 dpy ] 1 dy,
B, — ——C [ f¥) . p = g [ ¥ 25
* 2 h( dp ),,:1 * 2 ah( dp )p_l )

Equation (24) defines the mean-mass temperature of the medium as a function of the reduced length

= (1/Pe)(z/d), the dissipation parameter, and F. Figure 1 shows a family of curves for 2 as a function
of X for n = 1 for a series of values of gy and D. The curves for (X, D, oy, n) for the various n and D with
= 0.5 are shown in Fig, 2 (the broken lines correspond to the absence of digsipation, i.e., to the case of

DgO).

We ascribe the local heat-transfer coefficient to the temperature difference ty—t to get for Nu the
expression
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Fig, 3. Variation of local Nusselt number along the length of the tube: a) n =1;
1) 0g=0;2) 0,5;3) 0.08;b) gy = 0,5: 1) n=3;2)2;3)1;¢)n=23:1)gy=0.8;2)

0.55 3) 0.3; 4) 0.1.

We substitute for ¢ from (18) and for § from (24) to get

N b 2p2 \ )
B, —D - |ex (——X)+D 2

2( B ) \TF B;
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In Fig. 2a graphs of — 819/8plp areshown for a series of values of ¢y and D for n = 1 (the Shvedov
—Bingham model); the broken curves correspond to the absence of dissipation, In Fig, 2b curves are given
for —819/8pl =y = (X, D, oy, n) for various values of n and D and at ¢, = 0.5.

Nu =2

We can give formula (26) a somewhat different form for convenience in analysis; we use (19) to re~

write the expression (18) as

ﬁ:S[Ckexp (—3§X>~D%§ (—QFLEXH%JW*- (182)

0

Then we have
E(B -0 (- F0- (5 )
Bk—D—— exp 2 X))+ lﬂ*(P(P)PdP |
l3k B ( :

For X — « the series in the numerator of (26a) becomes small in comparison with the temperature
1

(26a)

Nu=2

gradient at the wall, while the series in the denominator becomes small by comparison with g&w(p)pdp,
and Nu tends to the constant value 0
(2)
Nue = —2/; l%apiﬁ. (27)
f B¢ (p)pdo
0

To determine the limiting value of Nu in analytical form we represent 4« as
an—k 4n—k

£
c);(lmp 40y " lnp), (28)

n
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0
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where n is as in (1a), in particular n = 1 for the Shvedov—Bingham model and n = 2 for the Casson model,
We see that (19) and (28) are equivalent to the formulas of [10],

For a Newtonian liquid (gy = 0), we have from (4), (23), and (28) that

1 1 0d
¥, = — D(1l —p%); =1—p% I,= —; [ = — D
» =y DU—0% @) o5 L= (ap)p=1
1

5
& dp =—D.
S «@o)pdp %

g

Then (27) shows that Nu,= 48/5 = 9.6, which corresponds to the value found previously [11] by a solu-
tion of this prablem for a Newtonian liquid.,

The curves for Nu(z/Ped, D, gy, n) for a Shvedov—Bingham medium for various g and D are shown in
Fig. 3a; the broken lines in Fig, 3a represent the Nu(z/Ped, D) curves for a Newtonian liquid,

In Fig, 3b the relationship Nu({z/Ped, D, ¢y, n) is shown for various n and D with ¢y = 0.5; it is clear
that Nu increases with X more or less rapidly as a function of D and tends to the limiting value Nu,, which,
in this case (non-Newtonian liquid) is a function of ¢4 and n,

For ¢y = 0.5 (Fig. 3b), Nuy, takes the following values: 14 forn =1, 16 for n=2, and 18 for n = 3,
i,e., Nu, increases with the nonlinearity parameter. It is evident from Fig, 3c that Nu, also increases
with gy, Calculations were performed from (26) for n = 1-3 and gy = 0.1-0.8 with steps of 0.1; these showed
that Nu,, in the presence of dissipation increases from 9.8 to 18 for n =1, from 10.2 to 34,5 for n = 2, and
from 10.8 to 39.4 for n = 3. In the absence of dissipation, this same range of variation in ¢ causes Ny, to
increase from 3.8to 4.8 for n = 1, from 4,0 to 5,0 for n =2, and from 4.2 to 5.2 forn =3, Forn of 4 and
5 we perform the calculations only for oy = 0.5; in this case, we get for dissipation that Nu, = 20,7 for
n =4 and 23 for n = 5, while in the absence of dissipation Nu_ = 4,8 and 4.9 respectively.

Then a non-Newtonian system deseribed by {1a) in a circular tube has higher Nu, than does a New-
tonian liquid under the same conditions; the same may be said even for the absence of disgipation, but in
this case the effects of the plasticity and nonlinearity parameters are much less (the Nu for a Newtonian
liquid is 3.66 in the absence of dissipation).

Thermal stabilization occurs over a length at the end of which Nu, {for given o and n) differs from
the final value by not more than 1%; this length is dependent on D and decreases as the latter increases
(Fig. 3).

These results indicate that dissipation in the form of heat causes a considerable increase in N, and,
consequently, in the local heat-transfer coefficients o5 this increase in due basically to the radical change
in the temperature profile, which is due to the marked increase in the temperature gradients near the wall,
where there is particularly marked mechanical energy conversion. Figure 3 shows that this rise is less
pronounced at small differences from the inlet, but it is decisive from the point of minimum on the curve
for Nu(z) = f(1/Pe-z/d, D, g, n), which moves towards the start of the tube as D increases.,

The iteration method of [12] was used to determine the first eigenvalues and eigenfunctions; the
essence of this for (11) is as follows,

We multiply both parts of (11) by ¢y and integrate from 0 to 1 to get

1 1
{ppdove) = — 626\ 0P (p) bi dp,

]
whence integration by parts gives

1
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We assume for the zeroth approximation that

n(k—}——%) 2
e = 4 ——1, (30)

OSVE(_p)dp

which is derived from the asymptotic solution of (11) [8],
We substitute for ‘C’l(<0) into
() + 0@ (0) b, = 0 (B1)

and solve the Cauchy problem for this equation by the Runge—Kutta method with the boundary conditions
d)l'i((,)) =0, zpk(()) =1 to get approximate values for the eigenfunctions at the points pj in the interval (0.1—-yx
1

(e, pi), and also for 1. (/ef?, 1), yi(Vel?, 1) and the norm [ po(p)(ve(?), p)dp.
0

Further, from

23

() _ Sl(zp—n__‘l?h(l/]' eP=0, D) () e, 1) _ (32)

[ o0 (o) w2 (VEFT, p)dop
1]

we get the subsequent approximations elgp ),

Equation {32) applies from p = 1; each successive 8(p) is substituted in (31) to calculate the eigen~
function, the derivative of this, and the norm, The process converges sufficiently rapidly in the third or
fourth approximation. The method enables one to derive not less than 5 or 6 first values for g and Ppk(gk,
pi); the asymptotic solution is sufficiently accurate for k = 4,5, so subsequent computations of the eigen-
values and eigenfunctions, and also any relative quantities, should be done via the asymptotic formulas
given in [8].
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